Commercial software products are
often rushed to market with less
regard for quality than for timeliness
of release. The perversity of this
approach is that tasks are allocated
based on the time available instead of
the time needed to do the job right. Is
there an acceptable balance between
such time-to-market pressures and
the application of quality principles?
A proper understanding of customer
expectations and truly economical use
of technical resources suggests such a

tradeoff is possible.

Key words: customer satisfaction,
productivity, project management,
scheduling, tradeoffs

54 SQP 1, NO. 3/° 1999, ASQ

Balancing Time
to Market
and Quality

STEVEN R. RAKITIN
Software Quality Consulting

Editor’s note: “Talking Points” will feature short essays that
are meant to facilitate discussion of quality principles and their
application. This first “Talking Points” has been contributed by
Steven Rakitin, a member of SQP’s editorial board.

INTRODUCTION

“We are so used to the notion that quality must take a back
seat to productivity that we continue to put up with practices
that we know will produce software of lesser quality. Better
practices, education, and tools are less important than a
change in heart.” (Hsia 1993)

During a typical day, most people encounter defective
software. Some of the factors that affect software quality are:

e Customers often do not know what they want and
frequently change the requirements.

* The work that software engineers do is technically chal-
lenging and highly complex.

e Universities spend too much time teaching program-
ming skills and not enough time teaching the discipline
of software engineering.

o Few software engineers have had formal training in
essential skills such as software project management,
software estimating and scheduling, risk management,
software verification and validation, and software relia-
bility growth modeling.

o Management invests little in training software engineers.

e Performance evaluations of software engineers are
often based solely on productivity rather than quality
and productivity.

In developing software, each line of code is hand crafted,
frequently based on incomplete, ambiguous, and inconsistent
requirements. Watts Humphrey (1997) has collected data that
show that experienced programmers make one mistake for
every 10 lines of code they write. At this rate, a product with

Balancing Time to Market and Quality

one million lines of code will have 100,000 defects!
While 95 percent of these defects are typically found
before the product is released, about 5000 defects
would remain in the product, yielding a 5 percent
defect rate. Clearly, people would not accept such poor
quality in other types of products. Why then should
they accept it for software products, which have
become an indispensable part of today’s society?

THE TIME-TO-MARKET VS.
QUALITY TRADEQFF

Many software suppliers cannot keep pace with the
demand for new products, so they frequently set
overly aggressive schedules for new product develop-
ment. As a result, software engineers are pressured
to deliver based on the desire to meet perceived
customer demand. Often, factors such as the complex-
ity of the new product, the organization’s capability
and capacity, resources and the ability to add staff,
past experiences, and the like are not fully considered
when setting these schedules.

When the end date (time to market) is given,
software engineers have to “schedule backward.” This
means that the project schedule is developed by start-
ing with the end date and working backward.
Scheduling backward often results in failure. Software
engineers know it is wrong, yet they continue to do it.

When making the time-to-market vs. quality
tradeoff, more often than not, quality suffers. From the
customer’s perspective, dealing with defective software
is time consuming, frustrating, and inefficient. From the
supplier’s perspective, defective software is costly. Not
only are defects expensive to fix, but they increase sup-
port costs and lower profits since expensive engineering
resources are diverted from new product development
(which generates revenue) to bug-fix releases (which
typically do not generate revenue).

A Typical Scheduled-Backward
Project

By focusing only on time to market, software engi-
neers are forced to schedule backward. When they
schedule backward, task estimates are made based
on the time available rather than the time required.
Things such as decomposing tasks to understand the
scope of the problem and identifying intertask depen-
dencies are usually not done.

With this type of schedule, consideration is seldom
given to the unexpected occurrences that always
happen during the course of every project. For example:

¢ The requirements will change.

e A key member of the team will leave the
company, go on medical leave, or win the lottery.

¢ A key assumption about the product or tech-
nology will be wrong.

* Training needed to help people learn new tools
or technology will not be planned.

e Important information one group needs to do
its job will be incomplete or insufficient.

¢ Dependencies will arise that were previously
unknown or ignored.

o Key resources will be pulled off the project to
resolve problems with another product.

By ignoring the complexity, organizational capabil-
ities, resource requirements, and the unexpected
things that always happen, the schedule quickly
becomes meaningless.

Sooner or later, a key task will be late or unable to be
completed. For instance, changing requirements could
cause the design specification to take twice as long to
complete as originally planned—and a ripple effect
begins. The test plans, documentation, and coding take
longer than expected because the tasks were never fully
understood in the first place, dependencies between
tasks were never identified, contingency plans for
staffing were never implemented, and so on.

At this point, the project manager begins to panic.
The end date is fixed since customers have already
been promised the product will be released on time.
It seems the only choice is to take shorteuts. After all,
the project team is being evaluated based on whether
the product is released on time—not whether it does
everything it is supposed to.

So what gets cut? First, the project manager aban-
dons whatever process the team was following. The
focus shifts to paring down features and cranking up
coding. Activities such as regression testing, design
reviews, and code inspections are eliminated. The
amount of time the software quality assurance group
needs for validation testing is drastically cut since it is
always the last activity on the schedule. No design
reviews, no code inspections, less testing, and more hur-
rying add up to a poor quality product. Sound familiar?

S. RAKITIN/® 1999, ASQ 55

Balancing Time to Market and Quality

The most amazing thing about this scenario is
that no matter how many times it happens, manage-
ment is still:

o Appalled at the high support costs

o Upset with quality assurance for missing so
many defects

e Quick to blame software engineers for doing
shoddy work

Clearly, focusing only on time-to-market goals or
only on quality goals to the exclusion of the other is not
desirable. Having an acceptable product that is months
late and, as a result, does not sell is just as bad as releas-
ing an unacceptable product on time. The question is:
“Can a reasonable balance between meeting both time-
to-market and quality goals be achieved?”

WHAT IS ACCEPTABLE QUALITY?

For many organizations, exactly what customers
expect is rarely defined. Lacking any quantitative defi-
nition, people often adopt an all-or-nothing approach,
that is, either shipping the product at some preset
time or spending an inordinate amount of time trying
to achieve perfection. Neither extreme is good.

James Bach (1997) popularized the term “good
enough quality.” While some disagree with applying this
notion to software, most organizations (developing soft-
ware that is neither safety critical or life threatening)
make the decision to ship based on some notion that the
product is “good enough.” They know that customers
are not willing to wait for or pay for perfect software.

The objective then should be to find and fix those
defects that customers are likely to find. Some mass-
market software suppliers have managed to do this
quite successfully. For instance, it is estimated that the
original release of Windows 95 had more than 13,000
known defects that Microsoft chose to defer (Yourdon
1998). The product’s success may be at least partly
due to the good job Microsoft did of fixing the defects
most users would encounter and find unacceptable,
while deferring the rest.

Achieving Quality Software On
Time
Time-to-market and quality goals are not mutually

exclusive. Both goals can be achieved with the proper
motivation, a quality culture, and continuing support.

56 SQP 1, NO. 3/° 1999, ASQ

The proper motivation

If one were to look at the performance objectives
within an organization (that is, the objectives that
salary increases are based on) for project managers
and software engineers, he or she would probably not
find the word “quality” anywhere. Yet, studies have
shown that people will optimize their performance
based on the objectives they are being measured
against (Weinberg 1971).

Project teams should have performance objectives
based on meeting both schedule and quality goals. To
improve quality, management needs to make quality
as important as time to market.

Establish a quality culture
“Quality is the most effective way to assure long-term
profits. There is a strong relationship between ‘sales’ and
‘product quality.” Quality is a base for mass production
and mass sales. Quality contributes to a growth of total
size of a market, as well as increase in market shares.
Software producers have traditionally failed to under-
stand this aspect of quality....” (lizuka 1995)

By establishing a quality culture, management
encourages people to do it right the first time. A
quality culture has a number of attributes.

* Make quality measurable. To make quality
measurable, people need to see the connection
between what they do and the quality of the
product or service they provide. While there are
many objective measures that can be used to
assess product quality, it is important that each
organization establish quality measures that
they then “own.” Posting these measures in a
central place helps reinforce the quality culture.

o Schedule forward. By using techniques such as
yellow-sticky scheduling and the Wideband
Delphi method (Weinberg 1971), organizations
can develop realistic and accurate schedules—
a key component of achieving quality software
on time.

What can one expect when scheduling for-
ward? First, by having peers critique each part
of the schedule, the resulting schedule is more
comprehensive and more accurate. Second,
project team members will be committed to
meeting the schedule because the schedule is
theirs. They created and therefore own the
schedule—it was not forced upon them. Lastly,

Balancing Time to Market and Quality

the project team agrees to be held accountable
for meeting the schedule. If someone misses a
date for whatever reason, the team will recover
without slipping the end date.

Management needs to learn to trust the sched-
ule the project team develops. If customer
expectations are set properly initially, cus-
tomers will be delighted when the organization
delivers quality software on time.

e Get everyone involved in quality improve-
ment. The biggest improvements in software
quality will come from the people doing the
work. They know where the current process
can be improved. Measurement data can be
used to support their ideas. By getting everyone
involved, employees will own the process and,
as a result, be more inclined to follow it.

Provide continuing support
Management must provide continuing support to
achieve quality software on time. Some examples are:

e Learn to trust the process. Do not allow project
managers to abandon the process when the
going gets tough—which is when the process is
needed most.

¢ Be willing to make the tough decisions. If the
project team says the product is not ready to
be released, ask for the data, make an informed
decision, and explain the decision to the team
and to customers, if necessary.

¢ Insist on having a well-defined set of product-
release criteria. Resist the temptation to relax
the release criteria, especially during the final
weeks of the project.

If through its actions, management demonstrates
that it is serious about achieving quality software
on time, the improvements in both quality and on-
time delivery can be dramatic and will result in very
satisfied customers.

SUMMARY

Balancing quality and time to market is difficult, but
it can be done. With a strong commitment from
management, the organization can benefit from
lower support costs, fewer bug-fix releases, and
increased profits. Customers can benefit by not
having to deal with defective software. This makes

customers more productive, and as a result, more
satisfied. And satisfied customers are more likely to
buy more of the company’s products.

REFERENCES

Bach, J. 1997. Good enough quality: Beyond the buzzword. [EEE
Computer (August): 96-98.

Hsia, P. 1993. Learning to put lessons into practice. IEEE Software
(September): 14-17.

Humphrey, W. S. 1997. "What if your life depended on software?"
Presentation to Boston Software Process Improvement Network meeting,
Boston, Mass.

lizuka, Y. 1995. A new paradigm for software quality: The turning point
for the Japanese software industry. In Software quality assurance and
measurement: A worldwide perspective, edited by N. Fenton, R. Whitty,
and Y. lizuka. London: Thompson Computer Press.

Weinberg, G. 1971. The psychology of computer programming. New York:
Van Nostrand Rheinhold.

Yourdon, E. 1998. The rise and resurrection of the American programmer.
Upper Saddle River, N. J.: Prentice Hall.

Author's note: Some ideas expressed in this article were based on an
earlier unpublished paper "Quality On Time" by Akira Fujimura.

BIOGRAPHY

Steven R. Rakitin has more than 25 years' experience as a software
engineer and software quality manager in a broad range of industries,
including nuclear power, defense, computers, automated test equipment,
telecommunications, medical instrumentation, and electronic design
automation. He was one of the authors of the IEEE Standard for Software
Quality Assurance Plans (IEEE-STD-730). He has written several papers on
software quality and recently published a book titled Software
Verification & Validation: A Practitioner's Guide.

Rakitin has a bachelor's degree in electrical engineering from
Northeastern University and a master's degree in computer science from
Rensselaer Polytechnic Institute. He has earned certifications from ASQ
as a software quality engineer (CSQE) and a quality auditor (CQA). He is a
member of the IEEE Computer Society and the ASQ Software Division,
and is on the editorial board of Software Quality Professional. Rakitin is
software quality chair for ASQ's Boston Section and is adjunct
professor at Northeastern University where he teaches a course on
software verification and validation. His company, Software Quality
Consulting, works with companies interested in developing a predictable
software development process. He can be contacted at Software Quality
Consulting, 21 Whitney Ln., Upton, MA 01568, or by e-mail at
srakitin@ma.ultranet.com .

S. RAKITIN/® 1999, ASQ 57

