
1

Design Inspection Checklist
High-Level Design
 General Requirements and Design
 1. Has review of the design identified problems with the requirements, such as missing requirements,

ambiguous requirements, extraneous requirements, untestable requirements, or implied
requirements?

 2. Is the design consistent with the requirements? For example, are there:
	 •	 missing	functions	
	 •	 extraneous	functions	
	 •	 imprecise,	ambiguous,	or	incorrect	functions	

 3. Are deviations from the requirements documented and approved?

 4. Are all assumptions documented?

 5. Have major design decisions been documented?

 6. Is the design consistent with these decisions?

 7. Does the design adequately address the following:
	 •	 real-time	requirements	
	 •	 performance	issues	(memory	and	timing)	
	 •	 spare	capacity	(CPU	and	memory)	
	 •	 maintainability	
	 •	 understandability	
	 •	 database	requirements	
	 •	 loading	and	initialization	
	 •	 error	handling	and	recovery	
	 •	 user	interface	issues	
	 •	 software	upgrades	

 Functional and Interface Specifications
 8.	Is	the	P-spec	for	each	process	accurate	and	complete?	

 9. Is it specified in precise, unambiguous terms? Does it clearly describe the required transformations?

 10. Are dependencies on other functions, Operating system kernel, hardware, etc., identified
and documented?

 11. Are human factors considerations properly addressed in those functions that provide the
user interface?

 12. Are design constraints, such as memory and timing budgets, specified where appropriate?

Software Quality Consulting
consulting • training • auditing

2

 13. Are requirements for error checking, error handling and recovery specified where needed?

 14. Are interfaces consistent with module usage? Missing interfaces? Extra interfaces?

 15. Are the interfaces specified to a sufficient level of detail that allows them to be verified?

 Conventions
 16. Does the design follow the established notation conventions?

Detailed Design

 Requirements Traceability
 1. Does the detailed design of this module or interface fulfill its part of the requirements?

 2. Has the inspection of this module or interface identified problems in the SRS? For example, missing
requirements, ambiguous requirements, conflicting requirements, untestable requirements, implied
requirements?

 3. Does the detailed design of this module or interface meet its high level design requirements?

 4. Has the inspection of the detailed design identified problems in the high level design?

 5. Are all functions completely and accurately described in sufficient detail?

 6. Are all interfaces completely and accurately described, including keyword or positional parameters,
field descriptors, attributes, ranges, and limits?

 7. Are the detailed design documents complete and consistent within themselves; data with logic;
all internal data defined; no extraneous data?

 Structure and Interfaces
 8. At a system and subsystem level, have all components or modules been identified on a System

Architecture Model?

 9. Is the level of decomposition sufficient to identify all modules?

 10. Will further decomposition result in identifying more modules?

 11. Have all interfaces between system/subsystem elements and modules been clearly and precisely
identified?

 12. Do successive levels of decomposition result in successive levels of detail?

 13. Are modules performing more than one specific function?

 Logic
 15. Are there logic errors?

3

 16. Are...
	 •	 all	unique	values	tested?	
	 •	 all	positional	values	tested?	
	 •	 increment	and	loop	counters	properly	initialized?	
	 •	 variables	and	data	areas	initialized	before	use?	

 17. Has the module been inspected for...
	 •	 correct	begin	and	end	of	table	processing?	
	 •	 correct	processing	of	queues	across	interrupts?	
	 •	 correct	decision	table	logic?	
	 •	 correct	precision/accuracy	of	calculations?	

 18. Are message priorities allocated properly to ensure the correct execution of code?

 19. Is the message processing sequence correct?

 20. Are there errors in handling data, data buffers, or tables, incorrect field updated, conflicting use of data
areas,	incomplete	initialization	or	update,	inconsistent	or	invalid	data	attributes?	

 21.		Are	procedure	call	and	return	interfaces	correctly	defined;	Call	and	return	parameters	defined	
correctly;	Correct	syntax?	

 Performance
 22. Are memory and timing budgets reasonable and achievable?

 Error Handling and Recovery
 23. Is there adequate error condition testing?

 24. Are error conditions tested where the probability of an error is high or results of an error would be
fatal to the system?

 25. Are return codes documented?

 26. Are return messages understandable?

 27. Does the program allow for successful error recovery...
	 •	 across	module	or	process	failures?	
	 •	 across	operating	system	failure?	
	 •	 across	interrupts?	
	 •	 across	hardware	failures?	

 Testability, Extensibility
 28. Is the design...
	 •	 understandable	(i.e.,	easy	to	read,	follow	logic)?	
	 •	 maintainable	(i.e.,	no	obscure	logic...)?	
	 •	 testable	(can	be	tested	with	a	reasonable	number	of	tests?	

 Coupling and Cohesion
 29. Evaluate the design using the standard coupling and cohesion criteria, if appropriate.

